Lemma 52.6.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $K \in D(\mathcal{O})$. The rule which associates to $U$ the set $\mathcal{I}(U)$ of sections $f \in \mathcal{O}(U)$ such that $T(K|_ U, f) = 0$ is a sheaf of ideals in $\mathcal{O}$.
Proof. We will use the results of Lemma 52.6.2 without further mention. If $f \in \mathcal{I}(U)$, and $g \in \mathcal{O}(U)$, then $\mathcal{O}_{U, gf}$ is an $\mathcal{O}_{U, f}$-module hence $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_{U, gf}, K|_ U) = 0$, hence $gf \in \mathcal{I}(U)$. Suppose $f, g \in \mathcal{O}(U)$. Then there is a short exact sequence
because $f, g$ generate the unit ideal in $\mathcal{O}(U)_{f + g}$. This follows from Algebra, Lemma 10.24.2 and the easy fact that the last arrow is surjective. Because $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}( - , K|_ U)$ is an exact functor of triangulated categories the vanishing of $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, f(f + g)}, K|_ U)$, $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, g(f + g)}, K|_ U)$, and $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, gf(f + g)}, K|_ U)$, implies the vanishing of $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(\mathcal{O}_{U, f + g}, K|_ U)$. We omit the verification of the sheaf condition. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: