The Stacks project

Lemma 61.12.20. Let $S$ be a scheme. Let $S_{affine, {pro\text{-}\acute{e}tale}}$ denote the full subcategory of $S_{pro\text{-}\acute{e}tale}$ consisting of affine objects. A covering of $S_{affine, {pro\text{-}\acute{e}tale}}$ will be a standard pro-étale covering, see Definition 61.12.6. Then restriction

\[ \mathcal{F} \longmapsto \mathcal{F}|_{S_{affine, {\acute{e}tale}}} \]

defines an equivalence of topoi $\mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}) \cong \mathop{\mathit{Sh}}\nolimits (S_{affine, {pro\text{-}\acute{e}tale}})$.

Proof. This you can show directly from the definitions, and is a good exercise. But it also follows immediately from Sites, Lemma 7.29.1 by checking that the inclusion functor $S_{affine, {pro\text{-}\acute{e}tale}} \to S_{pro\text{-}\acute{e}tale}$ is a special cocontinuous functor (see Sites, Definition 7.29.2). $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 61.12: The pro-étale site

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 098W. Beware of the difference between the letter 'O' and the digit '0'.