Lemma 61.12.20. Let $S$ be a scheme. Let $S_{affine, {pro\text{-}\acute{e}tale}}$ denote the full subcategory of $S_{pro\text{-}\acute{e}tale}$ consisting of affine objects. A covering of $S_{affine, {pro\text{-}\acute{e}tale}}$ will be a standard pro-étale covering, see Definition 61.12.6. Then restriction
defines an equivalence of topoi $\mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}) \cong \mathop{\mathit{Sh}}\nolimits (S_{affine, {pro\text{-}\acute{e}tale}})$.
Comments (0)
There are also: