Lemma 61.12.16. Let $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ be a big pro-étale site. Let $f : T \to S$ be a morphism in $\mathit{Sch}_{pro\text{-}\acute{e}tale}$.
We have $i_ f = f_{big} \circ i_ T$ with $i_ f$ as in Lemma 61.12.12 and $i_ T$ as in Lemma 61.12.13.
The functor $S_{pro\text{-}\acute{e}tale}\to T_{pro\text{-}\acute{e}tale}$, $(U \to S) \mapsto (U \times _ S T \to T)$ is continuous and induces a morphism of topoi
\[ f_{small} : \mathop{\mathit{Sh}}\nolimits (T_{pro\text{-}\acute{e}tale}) \longrightarrow \mathop{\mathit{Sh}}\nolimits (S_{pro\text{-}\acute{e}tale}). \]We have $f_{small, *}(\mathcal{F})(U/S) = \mathcal{F}(U \times _ S T/T)$.
We have a commutative diagram of morphisms of sites
\[ \xymatrix{ T_{pro\text{-}\acute{e}tale}\ar[d]_{f_{small}} & (\mathit{Sch}/T)_{pro\text{-}\acute{e}tale}\ar[d]^{f_{big}} \ar[l]^{\pi _ T}\\ S_{pro\text{-}\acute{e}tale}& (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}\ar[l]_{\pi _ S} } \]so that $f_{small} \circ \pi _ T = \pi _ S \circ f_{big}$ as morphisms of topoi.
We have $f_{small} = \pi _ S \circ f_{big} \circ i_ T = \pi _ S \circ i_ f$.
Comments (0)
There are also: