The Stacks project

Definition 61.2.3. A spectral space $X$ is w-local if the set of closed points $X_0$ is closed and every point of $X$ specializes to a unique closed point. A continuous map $f : X \to Y$ of w-local spaces is w-local if it is spectral and maps any closed point of $X$ to a closed point of $Y$.


Comments (0)

There are also:

  • 2 comment(s) on Section 61.2: Some topology

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 096A. Beware of the difference between the letter 'O' and the digit '0'.