Lemma 59.77.6. Let $\Lambda $ be a Noetherian ring. Let $f : X \to Y$ be a morphism of schemes. If $K \in D_{ctf}(Y_{\acute{e}tale}, \Lambda )$ then $Lf^*K \in D_{ctf}(X_{\acute{e}tale}, \Lambda )$.
Proof. Apply Lemma 59.77.3 to reduce this to a question about finite complexes of flat constructible sheaves of $\Lambda $-modules. Then the statement follows as $f^{-1} = f^*$ is exact and Lemma 59.71.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)