Lemma 15.91.24. Let $A \to B$ be a ring map. Let $I \subset A$ be a finitely generated ideal. If $A \to B$ is flat and $A/I \cong B/IB$, then the restriction functor $D(B) \to D(A)$ induces an equivalence $D_{comp}(B, IB) \to D_{comp}(A, I)$.
Proof. Choose generators $f_1, \ldots , f_ r$ of $I$. Denote $\check{\mathcal{C}}^\bullet _ A \to \check{\mathcal{C}}^\bullet _ B$ the quasi-isomorphism of extended alternating Čech complexes of Lemma 15.89.4. Let $K \in D_{comp}(A, I)$. Let $I^\bullet $ be a K-injective complex of $A$-modules representing $K$. Since $\mathop{\mathrm{Ext}}\nolimits ^ n_ A(A_ f, K)$ and $\mathop{\mathrm{Ext}}\nolimits ^ n_ A(B_ f, K)$ are zero for all $f \in I$ and $n \in \mathbf{Z}$ (Lemma 15.91.1) we conclude that $\check{\mathcal{C}}^\bullet _ A \to A$ and $\check{\mathcal{C}}^\bullet _ B \to B$ induce quasi-isomorphisms
and
Some details omitted. Since $\check{\mathcal{C}}^\bullet _ A \to \check{\mathcal{C}}^\bullet _ B$ is a quasi-isomorphism and $I^\bullet $ is K-injective we conclude that $\mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet ) \to I^\bullet $ is a quasi-isomorphism. As the complex $\mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet )$ is a complex of $B$-modules we conclude that $K$ is in the image of the restriction map, i.e., the functor is essentially surjective
In fact, the argument shows that $F : D_{comp}(A, I) \to D_{comp}(B, IB)$, $K \mapsto \mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet )$ is a left inverse to restriction. Finally, suppose that $L \in D_{comp}(B, IB)$. Represent $L$ by a K-injective complex $J^\bullet $ of $B$-modules. Then $J^\bullet $ is also K-injective as a complex of $A$-modules (Lemma 15.56.1) hence $F(\text{restriction of }L) = \mathop{\mathrm{Hom}}\nolimits _ A(B, J^\bullet )$. There is a map $J^\bullet \to \mathop{\mathrm{Hom}}\nolimits _ A(B, J^\bullet )$ of complexes of $B$-modules, whose composition with $\mathop{\mathrm{Hom}}\nolimits _ A(B, J^\bullet ) \to J^\bullet $ is the identity. We conclude that $F$ is also a right inverse to restriction and the proof is finished. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: