Lemma 15.56.2. Let $R \to S$ be an epimorphism of rings. Let $I^\bullet $ be a complex of $S$-modules. If $I^\bullet $ is K-injective as a complex of $R$-modules, then $I^\bullet $ is a K-injective complex of $S$-modules.
Proof. This is true because $\mathop{\mathrm{Hom}}\nolimits _{K(R)}(N^\bullet , I^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(S)}(N^\bullet , I^\bullet )$ for any complex of $S$-modules $N^\bullet $, see Algebra, Lemma 10.107.14. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)