Lemma 47.5.3. Let $R$ be a ring. Let $M$, $N$ be $R$-modules and let $M \to E$ and $N \to E'$ be injective hulls. Then
for any $R$-module map $\varphi : M \to N$ there exists an $R$-module map $\psi : E \to E'$ such that
\[ \xymatrix{ M \ar[r] \ar[d]_\varphi & E \ar[d]^\psi \\ N \ar[r] & E' } \]commutes,
if $\varphi $ is injective, then $\psi $ is injective,
if $\varphi $ is an essential injection, then $\psi $ is an isomorphism,
if $\varphi $ is an isomorphism, then $\psi $ is an isomorphism,
if $M \to I$ is an embedding of $M$ into an injective $R$-module, then there is an isomorphism $I \cong E \oplus I'$ compatible with the embeddings of $M$,
In particular, the injective hull $E$ of $M$ is unique up to isomorphism.
Comments (0)
There are also: