The Stacks project

115.20 Deformations and obstructions of flat modules

In this section we sketch a construction of a deformation theory for the stack of coherent sheaves for any algebraic space $X$ over a ring $\Lambda $. This material is obsolete due to the improved discussion in Quot, Section 99.6.

Our setup will be the following. We assume given

  1. a ring $\Lambda $,

  2. an algebraic space $X$ over $\Lambda $,

  3. a $\Lambda $-algebra $A$, set $X_ A = X \times _{\mathop{\mathrm{Spec}}(\Lambda )} \mathop{\mathrm{Spec}}(A)$, and

  4. a finitely presented $\mathcal{O}_{X_ A}$-module $\mathcal{F}$ flat over $A$.

In this situation we will consider all possible surjections

\[ 0 \to I \to A' \to A \to 0 \]

where $A'$ is a $\Lambda $-algebra whose kernel $I$ is an ideal of square zero in $A'$. Given $A'$ we obtain a first order thickening $X_ A \to X_{A'}$ of algebraic spaces over $\mathop{\mathrm{Spec}}(\Lambda )$. For each of these we consider the problem of lifting $\mathcal{F}$ to a finitely presented module $\mathcal{F}'$ on $X_{A'}$ flat over $A'$. We would like to replicate the results of Deformation Theory, Lemma 91.12.1 in this setting.

To be more precise let $\textit{Lift}(\mathcal{F}, A')$ denote the category of pairs $(\mathcal{F}', \alpha )$ where $\mathcal{F}'$ is a finitely presented module on $X_{A'}$ flat over $A'$ and $\alpha : \mathcal{F}'|_{X_ A} \to \mathcal{F}$ is an isomorphism. Morphisms $(\mathcal{F}'_1, \alpha _1) \to (\mathcal{F}'_2, \alpha _2)$ are isomorphisms $\mathcal{F}'_1 \to \mathcal{F}'_2$ which are compatible with $\alpha _1$ and $\alpha _2$. The set of isomorphism classes of $\textit{Lift}(\mathcal{F}, A')$ is denoted $\text{Lift}(\mathcal{F}, A')$.

Let $\mathcal{G}$ be a sheaf of $\mathcal{O}_ X \otimes _\Lambda A$-modules on $X_{\acute{e}tale}$ flat over $A$. We introduce the category $\textit{Lift}(\mathcal{G}, A')$ of pairs $(\mathcal{G}', \beta )$ where $\mathcal{G}'$ is a sheaf of $\mathcal{O}_ X \otimes _\Lambda A'$-modules flat over $A'$ and $\beta $ is an isomorphism $\mathcal{G}' \otimes _{A'} A \to \mathcal{G}$.

Lemma 115.20.1. Notation and assumptions as above. Let $p : X_ A \to X$ denote the projection. Given $A'$ denote $p' : X_{A'} \to X$ the projection. The functor $p'_*$ induces an equivalence of categories between

  1. the category $\textit{Lift}(\mathcal{F}, A')$, and

  2. the category $\textit{Lift}(p_*\mathcal{F}, A')$.

Proof. FIXME. $\square$

Let $\mathcal{H}$ be a sheaf of $\mathcal{O} \otimes _\Lambda A$-modules on $\mathcal{C}_{X/\Lambda }$ flat over $A$. We introduce the category $\textit{Lift}_\mathcal {O}(\mathcal{H}, A')$ whose objects are pairs $(\mathcal{H}', \gamma )$ where $\mathcal{H}'$ is a sheaf of $\mathcal{O} \otimes _\Lambda A'$-modules flat over $A'$ and $\gamma : \mathcal{H}' \otimes _ A A' \to \mathcal{H}$ is an isomorphism of $\mathcal{O} \otimes _\Lambda A$-modules.

Let $\mathcal{G}$ be a sheaf of $\mathcal{O}_ X \otimes _\Lambda A$-modules on $X_{\acute{e}tale}$ flat over $A$. Consider the morphisms $i$ and $\pi $ of Cotangent, Equation (92.27.1.1). Denote $\underline{\mathcal{G}} = \pi ^{-1}(\mathcal{G})$. It is simply given by the rule $(U \to \mathbf{A}) \mapsto \mathcal{G}(U)$ hence it is a sheaf of $\underline{\mathcal{O}}_ X \otimes _\Lambda A$-modules. Denote $i_*\underline{\mathcal{G}}$ the same sheaf but viewed as a sheaf of $\mathcal{O} \otimes _\Lambda A$-modules.

Lemma 115.20.2. Notation and assumptions as above. The functor $\pi _!$ induces an equivalence of categories between

  1. the category $\textit{Lift}_\mathcal {O}(i_*\underline{\mathcal{G}}, A')$, and

  2. the category $\textit{Lift}(\mathcal{G}, A')$.

Proof. FIXME. $\square$

Lemma 115.20.3. Notation and assumptions as in Lemma 115.20.2. Consider the object

\[ L = L(\Lambda , X, A, \mathcal{G}) = L\pi _!(Li^*(i_*(\underline{\mathcal{G}}))) \]

of $D(\mathcal{O}_ X \otimes _\Lambda A)$. Given a surjection $A' \to A$ of $\Lambda $-algebras with square zero kernel $I$ we have

  1. The category $\textit{Lift}(\mathcal{G}, A')$ is nonempty if and only if a certain class $\xi \in \mathop{\mathrm{Ext}}\nolimits ^2_{\mathcal{O}_ X \otimes A}(L, \mathcal{G} \otimes _ A I)$ is zero.

  2. If $\textit{Lift}(\mathcal{G}, A')$ is nonempty, then $\text{Lift}(\mathcal{G}, A')$ is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X \otimes A}(L, \mathcal{G} \otimes _ A I)$.

  3. Given a lift $\mathcal{G}'$, the set of automorphisms of $\mathcal{G}'$ which pull back to $\text{id}_\mathcal {G}$ is canonically isomorphic to $\mathop{\mathrm{Ext}}\nolimits ^0_{\mathcal{O}_ X \otimes A}(L, \mathcal{G} \otimes _ A I)$.

Proof. FIXME. $\square$

Finally, we put everything together as follows.

Proposition 115.20.4. With $\Lambda $, $X$, $A$, $\mathcal{F}$ as above. There exists a canonical object $L = L(\Lambda , X, A, \mathcal{F})$ of $D(X_ A)$ such that given a surjection $A' \to A$ of $\Lambda $-algebras with square zero kernel $I$ we have

  1. The category $\textit{Lift}(\mathcal{F}, A')$ is nonempty if and only if a certain class $\xi \in \mathop{\mathrm{Ext}}\nolimits ^2_{X_ A}(L, \mathcal{F} \otimes _ A I)$ is zero.

  2. If $\textit{Lift}(\mathcal{F}, A')$ is nonempty, then $\text{Lift}(\mathcal{F}, A')$ is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_{X_ A}(L, \mathcal{F} \otimes _ A I)$.

  3. Given a lift $\mathcal{F}'$, the set of automorphisms of $\mathcal{F}'$ which pull back to $\text{id}_\mathcal {F}$ is canonically isomorphic to $\mathop{\mathrm{Ext}}\nolimits ^0_{X_ A}(L, \mathcal{F} \otimes _ A I)$.

Proof. FIXME. $\square$

Lemma 115.20.5. In the situation of Proposition 115.20.4, if $X \to \mathop{\mathrm{Spec}}(\Lambda )$ is locally of finite type and $\Lambda $ is Noetherian, then $L$ is pseudo-coherent.

Proof. FIXME. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08VZ. Beware of the difference between the letter 'O' and the digit '0'.