The Stacks project

Lemma 92.18.10. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. There is a canonical map $L_{\mathcal{B}/\mathcal{A}} \to \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}$ which identifies the naive cotangent complex with the truncation $\tau _{\geq -1}L_{\mathcal{B}/\mathcal{A}}$.

Proof. Let $\mathcal{P}_\bullet $ be the standard resolution of $\mathcal{B}$ over $\mathcal{A}$. Let $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{B}] \to \mathcal{B})$. Recall that $\mathcal{P}_0 = \mathcal{A}[\mathcal{B}]$. The map of the lemma is given by the commutative diagram

\[ \xymatrix{ L_{\mathcal{B}/\mathcal{A}} \ar[d] & \ldots \ar[r] & \Omega _{\mathcal{P}_2/\mathcal{A}} \otimes _{\mathcal{P}_2} \mathcal{B} \ar[r] \ar[d] & \Omega _{\mathcal{P}_1/\mathcal{A}} \otimes _{\mathcal{P}_1} \mathcal{B} \ar[r] \ar[d] & \Omega _{\mathcal{P}_0/\mathcal{A}} \otimes _{\mathcal{P}_0} \mathcal{B} \ar[d] \\ \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}} & \ldots \ar[r] & 0 \ar[r] & \mathcal{I}/\mathcal{I}^2 \ar[r] & \Omega _{\mathcal{P}_0/\mathcal{A}} \otimes _{\mathcal{P}_0} \mathcal{B} } \]

We construct the downward arrow with target $\mathcal{I}/\mathcal{I}^2$ by sending a local section $\text{d}f \otimes b$ to the class of $(d_0(f) - d_1(f))b$ in $\mathcal{I}/\mathcal{I}^2$. Here $d_ i : \mathcal{P}_1 \to \mathcal{P}_0$, $i = 0, 1$ are the two face maps of the simplicial structure. This makes sense as $d_0 - d_1$ maps $\mathcal{P}_1$ into $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{P}_0 \to \mathcal{B})$. We omit the verification that this rule is well defined. Our map is compatible with the differential $\Omega _{\mathcal{P}_1/\mathcal{A}} \otimes _{\mathcal{P}_1} \mathcal{B} \to \Omega _{\mathcal{P}_0/\mathcal{A}} \otimes _{\mathcal{P}_0} \mathcal{B}$ as this differential maps a local section $\text{d}f \otimes b$ to $\text{d}(d_0(f) - d_1(f)) \otimes b$. Moreover, the differential $\Omega _{\mathcal{P}_2/\mathcal{A}} \otimes _{\mathcal{P}_2} \mathcal{B} \to \Omega _{\mathcal{P}_1/\mathcal{A}} \otimes _{\mathcal{P}_1} \mathcal{B}$ maps a local section $\text{d}f \otimes b$ to $\text{d}(d_0(f) - d_1(f) + d_2(f)) \otimes b$ which are annihilated by our downward arrow. Hence a map of complexes.

To see that our map induces an isomorphism on the cohomology sheaves $H^0$ and $H^{-1}$ we argue as follows. Let $\mathcal{C}'$ be the site with the same underlying category as $\mathcal{C}$ but endowed with the chaotic topology. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ be the morphism of topoi whose pullback functor is sheafification. Let $\mathcal{A}' \to \mathcal{B}'$ be the given map, but thought of as a map of sheaves of rings on $\mathcal{C}'$. The construction above gives a map $L_{\mathcal{B}'/\mathcal{A}'} \to \mathop{N\! L}\nolimits _{\mathcal{B}'/\mathcal{A}'}$ on $\mathcal{C}'$ whose value over any object $U$ of $\mathcal{C}'$ is just the map

\[ L_{\mathcal{B}(U)/\mathcal{A}(U)} \to \mathop{N\! L}\nolimits _{\mathcal{B}(U)/\mathcal{A}(U)} \]

of Remark 92.11.4 which induces an isomorphism on $H^0$ and $H^{-1}$. Since $f^{-1}L_{\mathcal{B}'/\mathcal{A}'} = L_{\mathcal{B}/\mathcal{A}}$ (Lemma 92.18.3) and $f^{-1}\mathop{N\! L}\nolimits _{\mathcal{B}'/\mathcal{A}'} = \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}$ (Modules on Sites, Lemma 18.35.3) the lemma is proved. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08US. Beware of the difference between the letter 'O' and the digit '0'.