Lemma 92.8.7. Let $A \to B$ be a local ring homomorphism of local rings. Let $A^ h \to B^ h$, resp. $A^{sh} \to B^{sh}$ be the induced maps of henselizations, resp. strict henselizations. Then
in $D(B^ h)$, resp. $D(B^{sh})$.
Lemma 92.8.7. Let $A \to B$ be a local ring homomorphism of local rings. Let $A^ h \to B^ h$, resp. $A^{sh} \to B^{sh}$ be the induced maps of henselizations, resp. strict henselizations. Then
in $D(B^ h)$, resp. $D(B^{sh})$.
Proof. The complexes $L_{A^ h/A}$, $L_{A^{sh}/A}$, $L_{B^ h/B}$, and $L_{B^{sh}/B}$ are all zero by Lemma 92.8.4. Using the fundamental distinguished triangle (92.7.0.1) for $A \to B \to B^ h$ we obtain $L_{B^ h/A} = L_{B/A} \otimes _ B^\mathbf {L} B^ h$. Using the fundamental triangle for $A \to A^ h \to B^ h$ we obtain $L_{B^ h/A^ h} = L_{B^ h/A}$. Similarly for strict henselizations. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)