Definition 92.18.2. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings on $\mathcal{C}$. The cotangent complex $L_{\mathcal{B}/\mathcal{A}}$ is the complex of $\mathcal{B}$-modules associated to the simplicial module
where $\epsilon : \mathcal{P}_\bullet \to \mathcal{B}$ is the standard resolution of $\mathcal{B}$ over $\mathcal{A}$. We usually think of $L_{\mathcal{B}/\mathcal{A}}$ as an object of $D(\mathcal{B})$.
Comments (0)