The Stacks project

Remark 92.12.5. In the situation of Theorem 92.12.4 let $I = \mathop{\mathrm{Ker}}(A \to B)$. Then $H^{-1}(L_{B/A}) = H_1(\mathcal{C}_{B/A}, \Omega ) = I/I^2$, see Lemma 92.11.2. Hence $H_ k(\mathcal{C}_{B/A}, \text{Sym}^ k(\Omega )) = \wedge ^ k_ B(I/I^2)$ by Remark 92.12.2. Thus the $E_1$-page looks like

\[ \begin{matrix} B \\ 0 \\ 0 & I/I^2 \\ 0 & H^{-2}(L_{B/A}) \\ 0 & H^{-3}(L_{B/A}) & \wedge ^2(I/I^2) \\ 0 & H^{-4}(L_{B/A}) & H_3(\mathcal{C}_{B/A}, \text{Sym}^2(\Omega )) \\ 0 & H^{-5}(L_{B/A}) & H_4(\mathcal{C}_{B/A}, \text{Sym}^2(\Omega )) & \wedge ^3(I/I^2) \end{matrix} \]

with horizontal differential. Thus we obtain edge maps $\text{Tor}_ i^ A(B, B) \to H^{-i}(L_{B/A})$, $i > 0$ and $\wedge ^ i_ B(I/I^2) \to \text{Tor}_ i^ A(B, B)$. Finally, we have $\text{Tor}_1^ A(B, B) = I/I^2$ and there is a five term exact sequence

\[ \text{Tor}_3^ A(B, B) \to H^{-3}(L_{B/A}) \to \wedge ^2_ B(I/I^2) \to \text{Tor}_2^ A(B, B) \to H^{-2}(L_{B/A}) \to 0 \]

of low degree terms.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08RG. Beware of the difference between the letter 'O' and the digit '0'.