The Stacks project

Lemma 14.30.2. Let $f : X \to Y$ be a trivial Kan fibration of simplicial sets. For any solid commutative diagram

\[ \xymatrix{ Z \ar[r]_ b \ar[d] & X \ar[d] \\ W \ar[r]^ a \ar@{-->}[ru] & Y } \]

of simplicial sets with $Z \to W$ (termwise) injective a dotted arrow exists making the diagram commute.

Proof. Suppose that $Z \not= W$. Let $n$ be the smallest integer such that $Z_ n \not= W_ n$. Let $x \in W_ n$, $x \not\in Z_ n$. Denote $Z' \subset W$ the simplicial subset containing $Z$, $x$, and all degeneracies of $x$. Let $\varphi : \Delta [n] \to Z'$ be the morphism corresponding to $x$ (Lemma 14.11.3). Then $\varphi |_{\partial \Delta [n]}$ maps into $Z$ as all the nondegenerate simplices of $\partial \Delta [n]$ end up in $Z$. By assumption we can extend $b \circ \varphi |_{\partial \Delta [n]}$ to $\beta : \Delta [n] \to X$. By Lemma 14.21.7 the simplicial set $Z'$ is the pushout of $\Delta [n]$ and $Z$ along $\partial \Delta [n]$. Hence $b$ and $\beta $ define a morphism $b' : Z' \to X$. In other words, we have extended the morphism $b$ to a bigger simplicial subset of $Z$.

The proof is finished by an application of Zorn's lemma (omitted). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08NM. Beware of the difference between the letter 'O' and the digit '0'.