The Stacks project

Lemma 91.11.5. Let $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a first order thickening of ringed topoi. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. There exists an element

\[ o(\varphi ) \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') \]

whose vanishing is a necessary and sufficient condition for the existence of a lift of $\varphi $ to an $\mathcal{O}'$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$.

Proof. It is clear from the proof of Lemma 91.11.1 that the vanishing of the boundary of $\varphi $ via the map

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}'}(\mathcal{F}', \mathcal{G}) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') \]

is a necessary and sufficient condition for the existence of a lift. We conclude as

\[ \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') \]

the adjointness of $i_* = Ri_*$ and $Li^*$ on the derived category (Cohomology on Sites, Lemma 21.19.1). $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 91.11: Infinitesimal deformations of modules on ringed topoi

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08MS. Beware of the difference between the letter 'O' and the digit '0'.