The Stacks project

Lemma 91.10.4. Let $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a first order thickening of ringed topoi. Assume given $\mathcal{O}$-modules $\mathcal{F}$, $\mathcal{K}$ and an $\mathcal{O}$-linear map $c : \mathcal{I} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{K}$. Then there exists an element

\[ o(\mathcal{F}, \mathcal{K}, c) \in \mathop{\mathrm{Ext}}\nolimits ^2_\mathcal {O}(\mathcal{F}, \mathcal{K}) \]

whose vanishing is a necessary and sufficient condition for the existence of a sequence (91.10.0.1) with $c_{\mathcal{F}'} = c$.

Proof. We first show that if $\mathcal{K}$ is an injective $\mathcal{O}$-module, then there does exist a sequence (91.10.0.1) with $c_{\mathcal{F}'} = c$. To do this, choose a flat $\mathcal{O}'$-module $\mathcal{H}'$ and a surjection $\mathcal{H}' \to \mathcal{F}$ (Modules on Sites, Lemma 18.28.8). Let $\mathcal{J} \subset \mathcal{H}'$ be the kernel. Since $\mathcal{H}'$ is flat we have

\[ \mathcal{I} \otimes _{\mathcal{O}'} \mathcal{H}' = \mathcal{I}\mathcal{H}' \subset \mathcal{J} \subset \mathcal{H}' \]

Observe that the map

\[ \mathcal{I}\mathcal{H}' = \mathcal{I} \otimes _{\mathcal{O}'} \mathcal{H}' \longrightarrow \mathcal{I} \otimes _{\mathcal{O}'} \mathcal{F} = \mathcal{I} \otimes _\mathcal {O} \mathcal{F} \]

annihilates $\mathcal{I}\mathcal{J}$. Namely, if $f$ is a local section of $\mathcal{I}$ and $s$ is a local section of $\mathcal{H}$, then $fs$ is mapped to $f \otimes \overline{s}$ where $\overline{s}$ is the image of $s$ in $\mathcal{F}$. Thus we obtain

\[ \xymatrix{ \mathcal{I}\mathcal{H}'/\mathcal{I}\mathcal{J} \ar@{^{(}->}[r] \ar[d] & \mathcal{J}/\mathcal{I}\mathcal{J} \ar@{..>}[d]_\gamma \\ \mathcal{I} \otimes _\mathcal {O} \mathcal{F} \ar[r]^-c & \mathcal{K} } \]

a diagram of $\mathcal{O}$-modules. If $\mathcal{K}$ is injective as an $\mathcal{O}$-module, then we obtain the dotted arrow. Denote $\gamma ' : \mathcal{J} \to \mathcal{K}$ the composition of $\gamma $ with $\mathcal{J} \to \mathcal{J}/\mathcal{I}\mathcal{J}$. A local calculation shows the pushout

\[ \xymatrix{ 0 \ar[r] & \mathcal{J} \ar[r] \ar[d]_{\gamma '} & \mathcal{H}' \ar[r] \ar[d] & \mathcal{F} \ar[r] \ar@{=}[d] & 0 \\ 0 \ar[r] & \mathcal{K} \ar[r] & \mathcal{F}' \ar[r] & \mathcal{F} \ar[r] & 0 } \]

is a solution to the problem posed by the lemma.

General case. Choose an embedding $\mathcal{K} \subset \mathcal{K}'$ with $\mathcal{K}'$ an injective $\mathcal{O}$-module. Let $\mathcal{Q}$ be the quotient, so that we have an exact sequence

\[ 0 \to \mathcal{K} \to \mathcal{K}' \to \mathcal{Q} \to 0 \]

Denote $c' : \mathcal{I} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{K}'$ be the composition. By the paragraph above there exists a sequence

\[ 0 \to \mathcal{K}' \to \mathcal{E}' \to \mathcal{F} \to 0 \]

as in (91.10.0.1) with $c_{\mathcal{E}'} = c'$. Note that $c'$ composed with the map $\mathcal{K}' \to \mathcal{Q}$ is zero, hence the pushout of $\mathcal{E}'$ by $\mathcal{K}' \to \mathcal{Q}$ is an extension

\[ 0 \to \mathcal{Q} \to \mathcal{D}' \to \mathcal{F} \to 0 \]

as in (91.10.0.1) with $c_{\mathcal{D}'} = 0$. This means exactly that $\mathcal{D}'$ is annihilated by $\mathcal{I}$, in other words, the $\mathcal{D}'$ is an extension of $\mathcal{O}$-modules, i.e., defines an element

\[ o(\mathcal{F}, \mathcal{K}, c) \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(\mathcal{F}, \mathcal{Q}) = \mathop{\mathrm{Ext}}\nolimits ^2_\mathcal {O}(\mathcal{F}, \mathcal{K}) \]

(the equality holds by the long exact cohomology sequence associated to the exact sequence above and the vanishing of higher ext groups into the injective module $\mathcal{K}'$). If $o(\mathcal{F}, \mathcal{K}, c) = 0$, then we can choose a splitting $s : \mathcal{F} \to \mathcal{D}'$ and we can set

\[ \mathcal{F}' = \mathop{\mathrm{Ker}}(\mathcal{E}' \to \mathcal{D}'/s(\mathcal{F})) \]

so that we obtain the following diagram

\[ \xymatrix{ 0 \ar[r] & \mathcal{K} \ar[r] \ar[d] & \mathcal{F}' \ar[r] \ar[d] & \mathcal{F} \ar[r] \ar@{=}[d] & 0 \\ 0 \ar[r] & \mathcal{K}' \ar[r] & \mathcal{E}' \ar[r] & \mathcal{F} \ar[r] & 0 } \]

with exact rows which shows that $c_{\mathcal{F}'} = c$. Conversely, if $\mathcal{F}'$ exists, then the pushout of $\mathcal{F}'$ by the map $\mathcal{K} \to \mathcal{K}'$ is isomorphic to $\mathcal{E}'$ by Lemma 91.10.3 and the vanishing of higher ext groups into the injective module $\mathcal{K}'$. This gives a diagram as above, which implies that $\mathcal{D}'$ is split as an extension, i.e., the class $o(\mathcal{F}, \mathcal{K}, c)$ is zero. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08MF. Beware of the difference between the letter 'O' and the digit '0'.