The Stacks project

Lemma 7.43.8. Let $i : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be a closed immersion of topoi. Then $i_*$ is fully faithful, transforms surjections into surjections, commutes with coequalizers, commutes with pushouts, reflects injections, reflects surjections, and reflects bijections.

Proof. Let $\mathcal{F}$ be a subsheaf of the final object $*$ of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ and let $E \subset \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be the full subcategory consisting of those $\mathcal{G}$ such that $\mathcal{F} \times \mathcal{G} \to \mathcal{F}$ is an isomorphism. By Lemma 7.43.5 the functor $i_*$ is isomorphic to the inclusion functor $\iota : E \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$.

Let $j_{\mathcal{F}} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be the localization functor (Lemma 7.30.1). Note that $E$ can also be described as the collection of sheaves $\mathcal{G}$ such that $j_\mathcal {F}^{-1}\mathcal{G} = *$.

Let $a, b : \mathcal{G}_1 \to \mathcal{G}_2$ be two morphism of $E$. To prove $\iota $ commutes with coequalizers it suffices to show that the coequalizer of $a$, $b$ in $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ lies in $E$. This is clear because the coequalizer of two morphisms $* \to *$ is $*$ and because $j_\mathcal {F}^{-1}$ is exact. Similarly for pushouts.

Thus $i_*$ satisfies properties (5), (6), and (7) of Lemma 7.41.1 and hence the morphism $i$ satisfies all properties mentioned in that lemma, in particular the ones mentioned in this lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08M1. Beware of the difference between the letter 'O' and the digit '0'.