The Stacks project

Remark 99.5.5. In Situation 99.5.1 the rule $(T, g, \mathcal{F}) \mapsto (T, g)$ defines a $1$-morphism

\[ \mathcal{C}\! \mathit{oh}_{X/B} \longrightarrow \mathcal{S}_ B \]

of stacks in groupoids (see Lemma 99.5.4, Algebraic Stacks, Section 94.7, and Examples of Stacks, Section 95.10). Let $B' \to B$ be a morphism of algebraic spaces over $S$. Let $\mathcal{S}_{B'} \to \mathcal{S}_ B$ be the associated $1$-morphism of stacks fibred in sets. Set $X' = X \times _ B B'$. We obtain a stack in groupoids $\mathcal{C}\! \mathit{oh}_{X'/B'} \to (\mathit{Sch}/S)_{fppf}$ associated to the base change $f' : X' \to B'$. In this situation the diagram

\[ \vcenter { \xymatrix{ \mathcal{C}\! \mathit{oh}_{X'/B'} \ar[r] \ar[d] & \mathcal{C}\! \mathit{oh}_{X/B} \ar[d] \\ \mathcal{S}_{B'} \ar[r] & \mathcal{S}_ B } } \quad \begin{matrix} \text{or in} \\ \text{another} \\ \text{notation} \end{matrix} \quad \vcenter { \xymatrix{ \mathcal{C}\! \mathit{oh}_{X'/B'} \ar[r] \ar[d] & \mathcal{C}\! \mathit{oh}_{X/B} \ar[d] \\ \mathit{Sch}/B' \ar[r] & \mathit{Sch}/B } } \]

is $2$-fibre product square. This trivial remark will occasionally be useful to change the base algebraic space.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08LP. Beware of the difference between the letter 'O' and the digit '0'.