Lemma 21.18.5. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be a morphism of ringed topoi. There is a canonical bifunctorial isomorphism
\[ \mathcal{F}^\bullet \otimes _\mathcal {O}^{\mathbf{L}} Lf^*\mathcal{G}^\bullet = \mathcal{F}^\bullet \otimes _{f^{-1}\mathcal{O}_ Y}^{\mathbf{L}} f^{-1}\mathcal{G}^\bullet \]
for $\mathcal{F}^\bullet $ in $D(\mathcal{O})$ and $\mathcal{G}^\bullet $ in $D(\mathcal{O}')$.
Proof.
Let $\mathcal{F}$ be an $\mathcal{O}$-module and let $\mathcal{G}$ be an $\mathcal{O}'$-module. Then $\mathcal{F} \otimes _{\mathcal{O}} f^*\mathcal{G} = \mathcal{F} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G}$ because $f^*\mathcal{G} = \mathcal{O} \otimes _{f^{-1}\mathcal{O}'} f^{-1}\mathcal{G}$. The lemma follows from this and the definitions.
$\square$
Comments (1)
Comment #9814 by Amos Elsworthy on
There are also: