Lemma 75.14.4. Let $S$ be a scheme. Let $(U \subset X, j : V \to X)$ be an elementary distinguished square of algebraic spaces over $S$. Let $T$ be a closed subset of $|X| \setminus |U|$ and let $(T, E, m)$ be a triple as in Definition 75.14.1. If
approximation holds for $(j^{-1}T, E|_ V, m)$, and
the sheaves $H^ i(E)$ for $i \geq m$ are supported on $T$,
then approximation holds for $(T, E, m)$.
Comments (0)