Lemma 21.24.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(\mathcal{F}_ n^\bullet )$ be an inverse system of complexes of $\mathcal{O}$-modules. Let $m \in \mathbf{Z}$. Suppose given $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and an integer $n_0$ such that
every object of $\mathcal{C}$ has a covering whose members are elements of $\mathcal{B}$,
for every $U \in \mathcal{B}$
the systems of abelian groups $\mathcal{F}_ n^{m - 2}(U)$ and $\mathcal{F}_ n^{m - 1}(U)$ have vanishing $R^1\mathop{\mathrm{lim}}\nolimits $ (for example these have the Mittag-Leffler property),
the system of abelian groups $H^{m - 1}(\mathcal{F}_ n^\bullet (U))$ has vanishing $R^1\mathop{\mathrm{lim}}\nolimits $ (for example it has the Mittag-Leffler property), and
we have $H^ m(\mathcal{F}_ n^\bullet (U)) = H^ m(\mathcal{F}_{n_0}^\bullet (U))$ for all $n \geq n_0$.
Then the maps $H^ m(\mathcal{F}^\bullet ) \to \mathop{\mathrm{lim}}\nolimits H^ m(\mathcal{F}_ n^\bullet ) \to H^ m(\mathcal{F}_{n_0}^\bullet )$ are isomorphisms of sheaves where $\mathcal{F}^\bullet = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n^\bullet $ is the termwise inverse limit.
Comments (0)