Lemma 20.33.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $X = U \cup V$ be the union of two open subspaces. For any object $E$ of $D(\mathcal{O}_ X)$ we have a distinguished triangle
in $D(\mathcal{O}_ X)$.
Lemma 20.33.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $X = U \cup V$ be the union of two open subspaces. For any object $E$ of $D(\mathcal{O}_ X)$ we have a distinguished triangle
in $D(\mathcal{O}_ X)$.
Proof. Choose a K-injective complex $\mathcal{I}^\bullet $ representing $E$ whose terms $\mathcal{I}^ n$ are injective objects of $\textit{Mod}(\mathcal{O}_ X)$, see Injectives, Theorem 19.12.6. We have seen that $\mathcal{I}^\bullet |U$ is a K-injective complex as well (Lemma 20.32.1). Hence $Rj_{U, *}E|_ U$ is represented by $j_{U, *}\mathcal{I}^\bullet |_ U$. Similarly for $V$ and $U \cap V$. Hence the distinguished triangle of the lemma is the distinguished triangle associated (by Derived Categories, Section 13.12 and especially Lemma 13.12.1) to the short exact sequence of complexes
This sequence is exact because for any $W \subset X$ open and any $n$ the sequence
is exact (see proof of Lemma 20.8.2). $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)