Lemma 76.42.10. Let $S$ be a scheme. Let $f : X \to Y$ be a representable proper morphism of Noetherian algebraic spaces over $S$. Let $\mathcal{J}, \mathcal{K} \subset \mathcal{O}_ Y$ be quasi-coherent sheaves of ideals. Assume $f$ is an isomorphism over $V = Y \setminus V(\mathcal{K})$. Set $\mathcal{I} = f^{-1}\mathcal{J} \mathcal{O}_ X$. Let $(\mathcal{G}_ n)$ be an object of $\textit{Coh}(Y, \mathcal{J})$, let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module, and let $\beta : (f^*\mathcal{G}_ n) \to \mathcal{F}^\wedge $ be an isomorphism in $\textit{Coh}(X, \mathcal{I})$. Then there exists a map
\[ \alpha : (\mathcal{G}_ n) \longrightarrow (f_*\mathcal{F})^\wedge \]
in $\textit{Coh}(Y, \mathcal{J})$ whose kernel and cokernel are annihilated by a power of $\mathcal{K}$.
Proof.
Since $f$ is a proper morphism we see that $f_*\mathcal{F}$ is a coherent $\mathcal{O}_ Y$-module (Cohomology of Spaces, Lemma 69.20.2). Thus the statement of the lemma makes sense. Consider the compositions
\[ \gamma _ n : \mathcal{G}_ n \to f_*f^*\mathcal{G}_ n \to f_*(\mathcal{F}/\mathcal{I}^ n\mathcal{F}). \]
Here the first map is the adjunction map and the second is $f_*\beta _ n$. We claim that there exists a unique $\alpha $ as in the lemma such that the compositions
\[ \mathcal{G}_ n \xrightarrow {\alpha _ n} f_*\mathcal{F}/\mathcal{J}^ nf_*\mathcal{F} \to f_*(\mathcal{F}/\mathcal{I}^ n\mathcal{F}) \]
equal $\gamma _ n$ for all $n$. Because of the uniqueness and étale descent for $\textit{Coh}(Y, \mathcal{J})$ it suffices to prove this étale locally on $Y$. Thus we may assume $Y$ is the spectrum of a Noetherian ring. As $f$ is representable we see that $X$ is a scheme as well. Thus we reduce to the case of schemes, see proof of Cohomology of Schemes, Lemma 30.25.3.
$\square$
Comments (0)