Lemma 76.42.2. Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$ and let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. A map $(\mathcal{F}_ n) \to (\mathcal{G}_ n)$ is surjective in $\textit{Coh}(X, \mathcal{I})$ if and only if $\mathcal{F}_1 \to \mathcal{G}_1$ is surjective.
Proof. We can check on an affine étale cover of $X$ by Lemma 76.42.1. Thus we reduce to the case of schemes which is Cohomology of Schemes, Lemma 30.23.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)