The Stacks project

Lemma 76.40.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $U \subset X$ be an open subspace. Assume

  1. $U$ is quasi-compact,

  2. $Y$ is quasi-compact and quasi-separated,

  3. there exists an immersion $U \to \mathbf{P}^ n_ Y$ over $Y$,

  4. $f$ is of finite type and separated.

Then there exists a commutative diagram

\[ \xymatrix{ & U \ar[ld] \ar[d] \ar[rd] \ar[rrd] \\ X \ar[rd] & X' \ar[l] \ar[d] \ar[r] & Z' \ar[ld] \ar[r] & Z \ar[ld] \\ & Y & \mathbf{P}^ n_ Y \ar[l] } \]

where the arrows with source $U$ are open immersions, $X' \to X$ is a $U$-admissible blowup, $X' \to Z'$ is an open immersion, $Z' \to Y$ is a proper and representable morphism of algebraic spaces. More precisely, $Z' \to Z$ is a $U$-admissible blowup and $Z \to \mathbf{P}^ n_ Y$ is a closed immersion.

Proof. Let $Z \subset \mathbf{P}^ n_ Y$ be the scheme theoretic image of the immersion $U \to \mathbf{P}^ n_ Y$. Since $U \to \mathbf{P}^ n_ Y$ is quasi-compact we see that $U \subset Z$ is a (scheme theoretically) dense open subspace (Morphisms of Spaces, Lemma 67.17.7). Apply Lemma 76.40.1 to find a diagram

\[ \xymatrix{ X' \ar[d] \ar[r] & \overline{X}' & Z' \ar[l] \ar[d] \\ X & U \ar[l] \ar[lu] \ar[u] \ar[ru] \ar[r] & Z } \]

with properties as listed in the statement of that lemma. As $X' \to X$ and $Z' \to Z$ are $U$-admissible blowups we find that $U$ is a scheme theoretically dense open of both $X'$ and $Z'$ (see Divisors on Spaces, Lemmas 71.17.4 and 71.6.4). Since $Z' \to Z \to Y$ is proper we see that $Z' \subset \overline{X}'$ is a closed subspace (see Morphisms of Spaces, Lemma 67.40.6). It follows that $X' \subset Z'$ (scheme theoretically), hence $X'$ is an open subspace of $Z'$ (small detail omitted) and the lemma is proved. $\square$


Comments (2)

Comment #7260 by Laurent Moret-Bailly on

Not sure how useful this is but you could also state that the map in the diagram is the one given in (3).

Comment #7332 by on

I've run out of steam for today, so I am going to leave this as is.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 088R. Beware of the difference between the letter 'O' and the digit '0'.