Lemma 30.23.8. Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent sheaf of ideals. If $(\mathcal{F}_ n)$ is an object of $\textit{Coh}(X, \mathcal{I})$ then $\bigoplus \mathop{\mathrm{Ker}}(\mathcal{F}_{n + 1} \to \mathcal{F}_ n)$ is a finite type, graded, quasi-coherent $\bigoplus \mathcal{I}^ n/\mathcal{I}^{n + 1}$-module.
Proof. The question is local on $X$ hence we may assume $X$ is affine, i.e., we have a situation as in Lemma 30.23.1. In this case, if $(\mathcal{F}_ n)$ corresponds to the finite $A^\wedge $ module $M$, then $\bigoplus \mathop{\mathrm{Ker}}(\mathcal{F}_{n + 1} \to \mathcal{F}_ n)$ corresponds to $\bigoplus I^ nM/I^{n + 1}M$ which is clearly a finite module over $\bigoplus I^ n/I^{n + 1}$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)