Lemma 76.37.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $V \subset Y$ be an open subspace. Assume
$f$ is locally of finite presentation,
$\mathcal{F}$ is of finite type and flat over $Y$,
$V \to Y$ is quasi-compact and scheme theoretically dense,
$\mathcal{F}|_{f^{-1}V}$ is of finite presentation.
Then $\mathcal{F}$ is of finite presentation.
Comments (0)