The Stacks project

Lemma 76.25.1. Let $S$ be a scheme. Let $f : Y \to X$ be a smooth morphism of algebraic spaces over $S$. Let $\mathcal{A}$ be a quasi-coherent sheaf of $\mathcal{O}_ X$-algebras. The integral closure of $\mathcal{O}_ Y$ in $f^*\mathcal{A}$ is equal to $f^*\mathcal{A}'$ where $\mathcal{A}' \subset \mathcal{A}$ is the integral closure of $\mathcal{O}_ X$ in $\mathcal{A}$.

Proof. By our construction of the integral closure, see Morphisms of Spaces, Definition 67.48.2, this reduces immediately to the case where $X$ and $Y$ are affine. In this case the result is Algebra, Lemma 10.147.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 082E. Beware of the difference between the letter 'O' and the digit '0'.