The Stacks project

Lemma 70.5.12. Let $S$ be a scheme. Let $B$ be an algebraic space over $S$. Let $X = \mathop{\mathrm{lim}}\nolimits X_ i$ be a directed limit of algebraic spaces over $B$ with affine transition morphisms. Let $Y \to X$ be a morphism of algebraic spaces over $B$.

  1. If $Y \to X$ is a closed immersion, $X_ i$ quasi-compact, and $Y \to B$ locally of finite type, then $Y \to X_ i$ is a closed immersion for $i$ large enough.

  2. If $Y \to X$ is an immersion, $X_ i$ quasi-separated, $Y \to B$ locally of finite type, and $Y$ quasi-compact, then $Y \to X_ i$ is an immersion for $i$ large enough.

  3. If $Y \to X$ is an isomorphism, $X_ i$ quasi-compact, $X_ i \to B$ locally of finite type, the transition morphisms $X_{i'} \to X_ i$ are closed immersions, and $Y \to B$ is locally of finite presentation, then $Y \to X_ i$ is an isomorphism for $i$ large enough.

  4. If $Y \to X$ is a monomorphism, $X_ i$ quasi-separated, $Y \to B$ locally of finite type, and $Y$ quasi-compact, then $Y \to X_ i$ is a monomorphism for $i$ large enough.

Proof. Proof of (1). Choose $0 \in I$. As $X_0$ is quasi-compact, we can choose an affine scheme $W$ and an étale morphism $W \to B$ such that the image of $|X_0| \to |B|$ is contained in $|W| \to |B|$. Choose an affine scheme $U_0$ and an étale morphism $U_0 \to X_0 \times _ B W$ such that $U_0 \to X_0$ is surjective. (This is possible by our choice of $W$ and the fact that $X_0$ is quasi-compact; details omitted.) Let $V \to Y$, resp. $U \to X$, resp. $U_ i \to X_ i$ be the base change of $U_0 \to X_0$ (for $i \geq 0$). It suffices to prove that $V \to U_ i$ is a closed immersion for $i$ sufficiently large. Thus we reduce to proving the result for $V \to U = \mathop{\mathrm{lim}}\nolimits U_ i$ over $W$. This follows from the case of schemes, which is Limits, Lemma 32.4.16.

Proof of (2). Choose $0 \in I$. Choose a quasi-compact open subspace $X'_0 \subset X_0$ such that $Y \to X_0$ factors through $X'_0$. After replacing $X_ i$ by the inverse image of $X'_0$ for $i \geq 0$ we may assume all $X_ i'$ are quasi-compact and quasi-separated. Let $U \subset X$ be a quasi-compact open such that $Y \to X$ factors through a closed immersion $Y \to U$ ($U$ exists as $Y$ is quasi-compact). By Lemma 70.5.7 we may assume that $U = \mathop{\mathrm{lim}}\nolimits U_ i$ with $U_ i \subset X_ i$ quasi-compact open. By part (1) we see that $Y \to U_ i$ is a closed immersion for some $i$. Thus (2) holds.

Proof of (3). Choose $0 \in I$. Choose an affine scheme $U_0$ and a surjective étale morphism $U_0 \to X_0$. Set $U_ i = X_ i \times _{X_0} U_0$, $U = X \times _{X_0} U_0 = Y \times _{X_0} U_0$. Then $U = \mathop{\mathrm{lim}}\nolimits U_ i$ is a limit of affine schemes, the transition maps of the system are closed immersions, and $U \to U_0$ is of finite presentation (because $U \to B$ is locally of finite presentation and $U_0 \to B$ is locally of finite type and Morphisms of Spaces, Lemma 67.28.9). Thus we've reduced to the following algebra fact: If $A = \mathop{\mathrm{lim}}\nolimits A_ i$ is a directed colimit of $R$-algebras with surjective transition maps and $A$ of finite presentation over $A_0$, then $A = A_ i$ for some $i$. Namely, write $A = A_0/(f_1, \ldots , f_ n)$. Pick $i$ such that $f_1, \ldots , f_ n$ map to zero under the surjective map $A_0 \to A_ i$.

Proof of (4). Set $Z_ i = Y \times _{X_ i} Y$. As the transition morphisms $X_{i'} \to X_ i$ are affine hence separated, the transition morphisms $Z_{i'} \to Z_ i$ are closed immersions, see Morphisms of Spaces, Lemma 67.4.5. We have $\mathop{\mathrm{lim}}\nolimits Z_ i = Y \times _ X Y = Y$ as $Y \to X$ is a monomorphism. Choose $0 \in I$. Since $Y \to X_0$ is locally of finite type (Morphisms of Spaces, Lemma 67.23.6) the morphism $Y \to Z_0$ is locally of finite presentation (Morphisms of Spaces, Lemma 67.28.10). The morphisms $Z_ i \to Z_0$ are locally of finite type (they are closed immersions). Finally, $Z_ i = Y \times _{X_ i} Y$ is quasi-compact as $X_ i$ is quasi-separated and $Y$ is quasi-compact. Thus part (3) applies to $Y = \mathop{\mathrm{lim}}\nolimits _{i \geq 0} Z_ i$ over $Z_0$ and we conclude $Y = Z_ i$ for some $i$. This proves (4) and the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0828. Beware of the difference between the letter 'O' and the digit '0'.