Definition 67.48.3. Let $S$ be a scheme. Let $f : Y \to X$ be a quasi-compact and quasi-separated morphism of algebraic spaces over $S$. Let $\mathcal{O}'$ be the integral closure of $\mathcal{O}_ X$ in $f_*\mathcal{O}_ Y$. The normalization of $X$ in $Y$ is the morphism of algebraic spaces
\[ \nu : X' = \underline{\mathop{\mathrm{Spec}}}_ X(\mathcal{O}') \to X \]
over $S$. It comes equipped with a natural factorization
\[ Y \xrightarrow {f'} X' \xrightarrow {\nu } X \]
of the initial morphism $f$.
Comments (0)
There are also: