The Stacks project

Remark 98.21.8 (Canonical element). Assumptions and notation as in Lemma 98.21.2. Choose an affine open $\mathop{\mathrm{Spec}}(\Lambda ) \subset S$ such that $\mathop{\mathrm{Spec}}(A) \to S$ corresponds to a ring map $\Lambda \to A$. Consider the ring map

\[ A \longrightarrow A[\Omega _{A/\Lambda }], \quad a \longmapsto (a, \text{d}_{A/\Lambda }(a)) \]

Pulling back $x$ along the corresponding morphism $\mathop{\mathrm{Spec}}(A[\Omega _{A/\Lambda }]) \to \mathop{\mathrm{Spec}}(A)$ we obtain a deformation $x_{can}$ of $x$ over $A[\Omega _{A/\Lambda }]$. We call this the canonical element

\[ x_{can} \in T_ x(\Omega _{A/\Lambda }) = \text{Lift}(x, A[\Omega _{A/\Lambda }]). \]

Next, assume that $\Lambda $ is Noetherian and $\Lambda \to A$ is of finite type. Let $k = \kappa (\mathfrak p)$ be a residue field at a finite type point $u_0$ of $U = \mathop{\mathrm{Spec}}(A)$. Let $x_0 = x|_{u_0}$. By (RS*) and the fact that $A[k] = A \times _ k k[k]$ the space $T_ x(k)$ is the tangent space to the deformation functor $\mathcal{F}_{\mathcal{X}, k, x_0}$. Via

\[ T\mathcal{F}_{U, k, u_0} = \text{Der}_\Lambda (A, k) = \mathop{\mathrm{Hom}}\nolimits _ A(\Omega _{A/\Lambda }, k) \]

(see Formal Deformation Theory, Example 90.11.11) and functoriality of $T_ x$ the canonical element produces the map on tangent spaces induced by the object $x$ over $U$. Namely, $\theta \in T\mathcal{F}_{U, k, u_0}$ maps to $T_ x(\theta )(x_{can})$ in $T_ x(k) = T\mathcal{F}_{\mathcal{X}, k, x_0}$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07YC. Beware of the difference between the letter 'O' and the digit '0'.