Lemma 98.13.4. Let $S$ be a locally Noetherian scheme. Let $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Y} \to \mathcal{Z}$ be composable $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $f$ and $g$ satisfy (98.13.2.1) so does $g \circ f$.
Proof. This follows formally from Formal Deformation Theory, Lemma 90.8.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)