Lemma 70.11.3. Let $S$ be a scheme. Let $f : X \to Y$ be a finite morphism of algebraic spaces over $S$. Assume $Y$ quasi-compact and quasi-separated. Then $X$ can be written as a directed limit $X = \mathop{\mathrm{lim}}\nolimits X_ i$ where the transition maps are closed immersions and the objects $X_ i$ are finite and of finite presentation over $Y$.
Proof. Consider the finite quasi-coherent $\mathcal{O}_ Y$-module $\mathcal{A} = f_*\mathcal{O}_ X$. By Lemma 70.9.6 we can write $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i$ as a directed colimit of finite and finitely presented $\mathcal{O}_ Y$-algebras $\mathcal{A}_ i$ with surjective transition maps. Set $X_ i = \underline{\mathop{\mathrm{Spec}}}_ Y(\mathcal{A}_ i)$, see Morphisms of Spaces, Definition 67.20.8. By construction $X_ i \to Y$ is finite and of finite presentation, the transition maps are closed immersions, and $X = \mathop{\mathrm{lim}}\nolimits X_ i$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)