The Stacks project

Proof. Let $R$ be quasi-excellent. Using that a finite type algebra over $R$ is quasi-excellent (Lemma 15.52.2) we see that it suffices to show that any quasi-excellent domain is N-1, see Algebra, Lemma 10.162.3. Applying Algebra, Lemma 10.161.15 (and using that a quasi-excellent ring is J-2) we reduce to showing that a quasi-excellent local domain $R$ is N-1. As $R \to R^\wedge $ is regular we see that $R^\wedge $ is reduced by Lemma 15.42.1. In other words, $R$ is analytically unramified. Hence $R$ is N-1 by Algebra, Lemma 10.162.10. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 15.52: Excellent rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07QV. Beware of the difference between the letter 'O' and the digit '0'.