The Stacks project

Smooth and syntomic algebras lift along surjections

Proposition 16.3.2. Let $R \to R_0$ be a surjective ring map with kernel $I$.

  1. If $R_0 \to A_0$ is a syntomic ring map, then there exists a syntomic ring map $R \to A$ such that $A/IA \cong A_0$.

  2. If $R_0 \to A_0$ is a smooth ring map, then there exists a smooth ring map $R \to A$ such that $A/IA \cong A_0$.

Proof. Assume $R_0 \to A_0$ syntomic, in particular a local complete intersection (More on Algebra, Lemma 15.33.5). Choose a presentation $A_0 = R_0[x_1, \ldots , x_ n]/J_0$. Set $C_0 = \text{Sym}^*_{A_0}(J_0/J_0^2)$. Note that $J_0/J_0^2$ is a finite projective $A_0$-module (Algebra, Lemma 10.136.16). By Lemma 16.3.1 the ring map $A_0 \to C_0$ is smooth and we can find a presentation $C_0 = R_0[y_1, \ldots , y_ m]/K_0$ with $K_0/K_0^2$ free over $C_0$. By Algebra, Lemma 10.136.6 we can assume $C_0 = R_0[y_1, \ldots , y_ m]/(\overline{f}_1, \ldots , \overline{f}_ c)$ where $\overline{f}_1, \ldots , \overline{f}_ c$ maps to a basis of $K_0/K_0^2$ over $C_0$. Choose $f_1, \ldots , f_ c \in R[y_1, \ldots , y_ c]$ lifting $\overline{f}_1, \ldots , \overline{f}_ c$ and set

\[ C = R[y_1, \ldots , y_ m]/(f_1, \ldots , f_ c) \]

By construction $C_0 = C/IC$. By Algebra, Lemma 10.136.10 we can after replacing $C$ by $C_ g$ assume that $C$ is a relative global complete intersection over $R$. We conclude that there exists a finite projective $A_0$-module $P_0$ such that $C_0 = \text{Sym}^*_{A_0}(P_0)$ is isomorphic to $C/IC$ for some syntomic $R$-algebra $C$.

Choose an integer $n$ and a direct sum decomposition $A_0^{\oplus n} = P_0 \oplus Q_0$. By More on Algebra, Lemma 15.9.11 we can find an étale ring map $C \to C'$ which induces an isomorphism $C/IC \to C'/IC'$ and a finite projective $C'$-module $Q$ such that $Q/IQ$ is isomorphic to $Q_0 \otimes _{A_0} C/IC$. Then $D = \text{Sym}_{C'}^*(Q)$ is a smooth $C'$-algebra (see More on Algebra, Lemma 15.9.13). Picture

\[ \xymatrix{ R \ar[d] \ar[rr] & & C \ar[r] \ar[d] & C' \ar[r] \ar[d] & D \ar[d] \\ R/I \ar[r] & A_0 \ar[r] & C/IC \ar[r]^{\cong } & C'/IC' \ar[r] & D/ID } \]

Observe that our choice of $Q$ gives

\begin{align*} D/ID & = \text{Sym}_{C/IC}^*(Q_0 \otimes _{A_0} C/IC) \\ & = \text{Sym}_{A_0}^*(Q_0) \otimes _{A_0} C/IC \\ & = \text{Sym}_{A_0}^*(Q_0) \otimes _{A_0} \text{Sym}_{A_0}^*(P_0) \\ & = \text{Sym}_{A_0}^*(Q_0 \oplus P_0) \\ & = \text{Sym}_{A_0}^*(A_0^{\oplus n}) \\ & = A_0[x_1, \ldots , x_ n] \end{align*}

Choose $f_1, \ldots , f_ n \in D$ which map to $x_1, \ldots , x_ n$ in $D/ID = A_0[x_1, \ldots , x_ n]$. Set $A = D/(f_1, \ldots , f_ n)$. Note that $A_0 = A/IA$. We claim that $R \to A$ is syntomic in a neighbourhood of $V(IA)$. If the claim is true, then we can find a $f \in A$ mapping to $1 \in A_0$ such that $A_ f$ is syntomic over $R$ and the proof of (1) is finished.

Proof of the claim. Observe that $R \to D$ is syntomic as a composition of the syntomic ring map $R \to C$, the étale ring map $C \to C'$ and the smooth ring map $C' \to D$ (Algebra, Lemmas 10.136.17 and 10.137.10). The question is local on $\mathop{\mathrm{Spec}}(D)$, hence we may assume that $D$ is a relative global complete intersection (Algebra, Lemma 10.136.15). Say $D = R[y_1, \ldots , y_ m]/(g_1, \ldots , g_ s)$. Let $f'_1, \ldots , f'_ n \in R[y_1, \ldots , y_ m]$ be lifts of $f_1, \ldots , f_ n$. Then we can apply Algebra, Lemma 10.136.10 to get the claim.

Proof of (2). Since a smooth ring map is syntomic, we can find a syntomic ring map $R \to A$ such that $A_0 = A/IA$. By assumption the fibres of $R \to A$ are smooth over primes in $V(I)$ hence $R \to A$ is smooth in an open neighbourhood of $V(IA)$ (Algebra, Lemma 10.137.17). Thus we can replace $A$ by a localization to obtain the result we want. $\square$


Comments (1)

Comment #3751 by slogan_bot on

Suggested slogan: Smooth and syntomic algebras lift along surjections


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07M8. Beware of the difference between the letter 'O' and the digit '0'.