Lemma 15.9.7. Let $A$ be a ring, let $I \subset A$ be an ideal. Let $f \in A[x]$ be a monic polynomial. Let $\overline{f} = \overline{g} \overline{h}$ be a factorization of $f$ in $A/I[x]$ and assume that $\overline{g}$, $\overline{h}$ generate the unit ideal in $A/I[x]$. Then there exists an étale ring map $A \to A'$ which induces an isomorphism $A/I \to A'/IA'$ and a factorization $f = g' h'$ in $A'[x]$ lifting the given factorization over $A/I$.
Proof. Say $f = x^ d + a_1 x^{d - 1} + \ldots + a_ d$ has degree $d$. Write $\overline{g} = \sum \overline{b}_ j x^ j$ and $\overline{h} = \sum \overline{c}_ j x^ j$. Then we see that $1 = \sum \overline{b}_ j \overline{c}_{d - j}$. It follows that $\mathop{\mathrm{Spec}}(A/I)$ is covered by the standard opens $D(\overline{b}_ j \overline{c}_{d - j})$. However, each point $\mathfrak p$ of $\mathop{\mathrm{Spec}}(A/I)$ is contained in at most one of these as by looking at the induced factorization of $f$ over the field $\kappa (\mathfrak p)$ we see that $\deg (\overline{g} \bmod \mathfrak p) + \deg (\overline{h} \bmod \mathfrak p) = d$. Hence our open covering is a disjoint open covering. Applying Lemma 15.9.3 (and replacing $A$ by $A'$) we see that we may assume there is a corresponding disjoint open covering of $\mathop{\mathrm{Spec}}(A)$. This disjoint open covering corresponds to a product decomposition of $A$, see Algebra, Lemma 10.24.3. It follows that
where the image of $\overline{g}$, resp. $\overline{h}$ in $A_ j/I_ j$ has degree $j$, resp. $d - j$ with invertible leading coefficient. Clearly, it suffices to prove the result for each factor $A_ j$ separately. Hence the lemma follows from Lemma 15.9.6. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)