The Stacks project

Proposition 60.21.3. Assumptions as in Proposition 60.21.1 but now assume that $\mathcal{F}$ is a crystal in quasi-coherent modules. Let $(M, \nabla )$ be the corresponding module with connection over $D$, see Proposition 60.17.4. Then the complex

\[ M \otimes ^\wedge _ D \Omega ^*_ D \]

computes $R\Gamma (\text{Cris}(X/S), \mathcal{F})$.

Proof. We will prove this using the two spectral sequences associated to the double complex $K^{*, *}$ with terms

\[ K^{a, b} = M \otimes _ D^\wedge \Omega ^ a_{D(b)} \]

What do we know so far? Well, Lemma 60.19.3 tells us that each column $K^{a, *}$, $a > 0$ is acyclic. Proposition 60.21.1 tells us that the first column $K^{0, *}$ is quasi-isomorphic to $R\Gamma (\text{Cris}(X/S), \mathcal{F})$. Hence the first spectral sequence associated to the double complex shows that there is a canonical quasi-isomorphism of $R\Gamma (\text{Cris}(X/S), \mathcal{F})$ with $\text{Tot}(K^{*, *})$.

Next, let's consider the rows $K^{*, b}$. By Lemma 60.17.1 each of the $b + 1$ maps $D \to D(b)$ presents $D(b)$ as the $p$-adic completion of a divided power polynomial algebra over $D$. Hence Lemma 60.20.2 shows that the map

\[ M \otimes ^\wedge _ D\Omega ^*_ D \longrightarrow M \otimes ^\wedge _{D(b)} \Omega ^*_{D(b)} = K^{*, b} \]

is a quasi-isomorphism. Note that each of these maps defines the same map on cohomology (and even the same map in the derived category) as the inverse is given by the co-diagonal map $D(b) \to D$ (corresponding to the multiplication map $P \otimes _ A \ldots \otimes _ A P \to P$). Hence if we look at the $E_1$ page of the second spectral sequence we obtain

\[ E_1^{a, b} = H^ a(M \otimes ^\wedge _ D\Omega ^*_ D) \]

with differentials

\[ E_1^{a, 0} \xrightarrow {0} E_1^{a, 1} \xrightarrow {1} E_1^{a, 2} \xrightarrow {0} E_1^{a, 3} \xrightarrow {1} \ldots \]

as each of these is the alternation sum of the given identifications $H^ a(M \otimes ^\wedge _ D\Omega ^*_ D) = E_1^{a, 0} = E_1^{a, 1} = \ldots $. Thus we see that the $E_2$ page is equal $H^ a(M \otimes ^\wedge _ D\Omega ^*_ D)$ on the first row and zero elsewhere. It follows that the identification of $M \otimes ^\wedge _ D\Omega ^*_ D$ with the first row induces a quasi-isomorphism of $M \otimes ^\wedge _ D\Omega ^*_ D$ with $\text{Tot}(K^{*, *})$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07LG. Beware of the difference between the letter 'O' and the digit '0'.