Lemma 60.5.5. In Situation 60.5.1. Let $P \to C$ be a surjection of $A$-algebras with kernel $J$. Write $D_{P, \gamma }(J) = (D, \bar J, \bar\gamma )$. Let $(D^\wedge , J^\wedge , \bar\gamma ^\wedge )$ be the $p$-adic completion of $D$, see Divided Power Algebra, Lemma 23.4.5. For every $e \geq 1$ set $P_ e = P/p^ eP$ and $J_ e \subset P_ e$ the image of $J$ and write $D_{P_ e, \gamma }(J_ e) = (D_ e, \bar J_ e, \bar\gamma )$. Then for all $e$ large enough we have
$p^ eD \subset \bar J$ and $p^ eD^\wedge \subset \bar J^\wedge $ are preserved by divided powers,
$D^\wedge /p^ eD^\wedge = D/p^ eD = D_ e$ as divided power rings,
$(D_ e, \bar J_ e, \bar\gamma )$ is an object of $\text{Cris}(C/A)$,
$(D^\wedge , \bar J^\wedge , \bar\gamma ^\wedge )$ is equal to $\mathop{\mathrm{lim}}\nolimits _ e (D_ e, \bar J_ e, \bar\gamma )$, and
$(D^\wedge , \bar J^\wedge , \bar\gamma ^\wedge )$ is an object of $\text{Cris}^\wedge (C/A)$.
Comments (0)
There are also: