There exist $\delta _1, \ldots , \delta _ d \in \Lambda $, $\delta _ i \not\in \mathfrak q$ and a factorization $D \to D' \to \Lambda _\mathfrak q/\mathfrak q^ n\Lambda _\mathfrak q$ with $D'$ local Artinian, $D \to D'$ essentially smooth, the map $D' \to \Lambda _\mathfrak q/\mathfrak q^ n\Lambda _\mathfrak q$ flat such that, with $\pi _ i' = \delta _ i \pi _ i$, we have for $i = 1, \ldots , d$
$(\pi _ i')^{2N} = \sum a_ j\lambda _{ij}$ in $\Lambda $ where $\lambda _{ij} \bmod \mathfrak q^ n\Lambda _\mathfrak q$ is an element of $D'$,
$\text{Ann}_{\Lambda /({\pi '}_1^ e, \ldots , {\pi '}_{i - 1}^ e)}({\pi '}_ i) = \text{Ann}_{\Lambda /({\pi '}_1^ e, \ldots , {\pi '}_{i - 1}^ e)}({\pi '}_ i^2)$,
$\delta _ i \bmod \mathfrak q^ n\Lambda _\mathfrak q$ is an element of $D'$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)