The Stacks project

Lemma 16.11.3. Let $\varphi : k[y_1, \ldots , y_ m] \to \Lambda $, $n$, $\mathfrak q$, $\mathfrak p$ and

\[ k[y_1, \ldots , y_ m]_\mathfrak p/\mathfrak p^ n \to D \to \Lambda _\mathfrak q/\mathfrak q^ n \Lambda _\mathfrak q \]

be as in Lemma 16.11.2. Then for any $\lambda \in \Lambda \setminus \mathfrak q$ there exists an integer $q > 0$ and a factorization

\[ k[y_1, \ldots , y_ m]_\mathfrak p/\mathfrak p^ n \to D \to D' \to \Lambda _\mathfrak q/\mathfrak q^ n \Lambda _\mathfrak q \]

such that $D \to D'$ is an essentially smooth map of local Artinian rings, the last arrow is flat, and $\lambda ^ q$ is in $D'$.

Proof. Set $\bar\Lambda = \Lambda _\mathfrak q/\mathfrak q^ n\Lambda _\mathfrak q$. Let $\bar\lambda $ be the image of $\lambda $ in $\bar\Lambda $. Let $\alpha \in \kappa (\mathfrak q)$ be the image of $\lambda $ in the residue field. Let $k \subset F \subset \kappa (\mathfrak q)$ be the residue field of $D$. If $\alpha $ is in $F$ then we can find an $x \in D$ such that $x \bar\lambda = 1 \bmod \mathfrak q$. Hence $(x \bar\lambda )^ q = 1 \bmod (\mathfrak q)^ q$ if $q$ is divisible by $p$. Hence $\bar\lambda ^ q$ is in $D$. If $\alpha $ is transcendental over $F$, then we can take $D' = (D[\bar\lambda ])_\mathfrak m$ equal to the subring generated by $D$ and $\bar\lambda $ localized at $\mathfrak m = D[\bar\lambda ] \cap \mathfrak q \bar\Lambda $. This works because $D[\bar\lambda ]$ is in fact a polynomial algebra over $D$ in this case. Finally, if $\lambda \bmod \mathfrak q$ is algebraic over $F$, then we can find a $p$-power $q$ such that $\alpha ^ q$ is separable algebraic over $F$, see Fields, Section 9.28. Note that $D$ and $\bar\Lambda $ are henselian local rings, see Algebra, Lemma 10.153.10. Let $D \to D'$ be a finite étale extension whose residue field extension is $F(\alpha ^ q)/F$, see Algebra, Lemma 10.153.7. Since $\bar\Lambda $ is henselian and $F(\alpha ^ q)$ is contained in its residue field we can find a factorization $D' \to \bar\Lambda $. By the first part of the argument we see that $\bar\lambda ^{qq'} \in D'$ for some $q' > 0$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07FI. Beware of the difference between the letter 'O' and the digit '0'.