The Stacks project

Remark 21.19.3. The construction of unbounded derived functor $Lf^*$ and $Rf_*$ allows one to construct the base change map in full generality. Namely, suppose that

\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[r]_{g'} \ar[d]_{f'} & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[d]^ f \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) \ar[r]^ g & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) } \]

is a commutative diagram of ringed topoi. Let $K$ be an object of $D(\mathcal{O}_\mathcal {C})$. Then there exists a canonical base change map

\[ Lg^*Rf_*K \longrightarrow R(f')_*L(g')^*K \]

in $D(\mathcal{O}_{\mathcal{D}'})$. Namely, this map is adjoint to a map $L(f')^*Lg^*Rf_*K \to L(g')^*K$. Since $L(f')^* \circ Lg^* = L(g')^* \circ Lf^*$ we see this is the same as a map $L(g')^*Lf^*Rf_*K \to L(g')^*K$ which we can take to be $L(g')^*$ of the adjunction map $Lf^*Rf_*K \to K$.


Comments (2)

Comment #9910 by Eduardo de Lorenzo Poza on

Here we see one natural way to construct a morphism . There is another way, which is just as natural: consider the adjunction map , apply to get and by adjunction we obtain the desired morphism . I supposr that these two morphisms obtained in two different ways are actually the same. Is there an "easy" way to see this? Maybe as some sort of universal property?

Comment #9911 by Eduardo de Lorenzo Poza on

Here we see one natural way to construct a morphism . There is another way, which is just as natural: consider the adjunction map , apply to get and by adjunction we obtain the desired morphism . I suppose that these two morphisms obtained in two different ways are actually the same. Is there an "easy" way to see this? Maybe as some sort of universal property?

Sorry about the duplicate comment, markdown was messing with formatting in the preview.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07A7. Beware of the difference between the letter 'O' and the digit '0'.