Lemma 20.28.1. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. The functor $Rf_*$ defined above and the functor $Lf^*$ defined in Lemma 20.27.1 are adjoint:
bifunctorially in $\mathcal{F}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}_ X))$ and $\mathcal{G}^\bullet \in \mathop{\mathrm{Ob}}\nolimits (D(\mathcal{O}_ Y))$.
Comments (0)
There are also: