Exercise 111.32.1. Carefully prove that a map of sheaves of sets is an monomorphism (in the category of sheaves of sets) if and only if the induced maps on all the stalks are injective.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)