Lemma 103.11.4. Let $f : \mathcal{X} \to \mathcal{Y}$ be a quasi-compact and quasi-separated morphism of algebraic stacks. Let $\mathcal{F}$ be a quasi-coherent sheaf on $\mathcal{X}$. Then there exists a spectral sequence with $E_2$-page
\[ E_2^{p, q} = H^ p(\mathcal{Y}, R^ qf_{\mathit{QCoh}, *}\mathcal{F}) \]
converging to $H^{p + q}(\mathcal{X}, \mathcal{F})$.
Proof.
By Cohomology on Sites, Lemma 21.14.5 the Leray spectral sequence with
\[ E_2^{p, q} = H^ p(\mathcal{Y}, R^ qf_*\mathcal{F}) \]
converges to $H^{p + q}(\mathcal{X}, \mathcal{F})$. The kernel and cokernel of the adjunction map
\[ R^ qf_{\mathit{QCoh}, *}\mathcal{F} \longrightarrow R^ qf_*\mathcal{F} \]
are parasitic modules on $\mathcal{Y}$ (Lemma 103.10.2) hence have vanishing cohomology (Lemma 103.9.3). It follows formally that $H^ p(\mathcal{Y}, R^ qf_{\mathit{QCoh}, *}\mathcal{F}) = H^ p(\mathcal{Y}, R^ qf_*\mathcal{F})$ and we win.
$\square$
Comments (0)