The Stacks project

Lemma 78.12.2. Let $B \to S$ as in Section 78.3. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. If $(\mathcal{F}, \alpha )$ is a quasi-coherent module on $(U, R, s, t, c)$ then $\alpha $ is an isomorphism.

Proof. Pull back the commutative diagram of Definition 78.12.1 by the morphism $(i, 1) : R \to R \times _{s, U, t} R$. Then we see that $i^*\alpha \circ \alpha = s^*e^*\alpha $. Pulling back by the morphism $(1, i)$ we obtain the relation $\alpha \circ i^*\alpha = t^*e^*\alpha $. By the second assumption these morphisms are the identity. Hence $i^*\alpha $ is an inverse of $\alpha $. $\square$


Comments (2)

Comment #6701 by on

Perhaps, in this section, wants to be a groupoid in algebraic spaces over some ?

There are also:

  • 2 comment(s) on Section 78.12: Quasi-coherent sheaves on groupoids

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 077W. Beware of the difference between the letter 'O' and the digit '0'.