Lemma 39.14.5. Let $S$ be a scheme. Let $(U, R, s, t, c)$ be a groupoid scheme over $S$. The category of quasi-coherent modules on $(U, R, s, t, c)$ has colimits.
Proof. Let $i \mapsto (\mathcal{F}_ i, \alpha _ i)$ be a diagram over the index category $\mathcal{I}$. We can form the colimit $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ which is a quasi-coherent sheaf on $U$, see Schemes, Section 26.24. Since colimits commute with pullback we see that $s^*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits s^*\mathcal{F}_ i$ and similarly $t^*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits t^*\mathcal{F}_ i$. Hence we can set $\alpha = \mathop{\mathrm{colim}}\nolimits \alpha _ i$. We omit the proof that $(\mathcal{F}, \alpha )$ is the colimit of the diagram in the category of quasi-coherent modules on $(U, R, s, t, c)$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: