Lemma 12.10.3. Let $\mathcal{A}$ be an abelian category. Let $\mathcal{C}$ be a subcategory of $\mathcal{A}$. Then $\mathcal{C}$ is a weak Serre subcategory if and only if the following conditions are satisfied:
$0 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$,
$\mathcal{C}$ is a strictly full subcategory of $\mathcal{A}$,
kernels and cokernels in $\mathcal{A}$ of morphisms between objects of $\mathcal{C}$ are in $\mathcal{C}$,
if $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ is an extension of objects of $\mathcal{C}$ then also $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.
Moreover, a weak Serre subcategory is an abelian category and the inclusion functor is exact.
Comments (0)
There are also: