Lemma 11.8.4. Consider a finite central skew field $K$ over $k$. Let $d^2 = [K : k]$. For any finite splitting field $k'$ for $K$ the degree $[k' : k]$ is divisible by $d$.
Proof. By Theorem 11.8.2 there exists a finite central simple algebra $B$ in the Brauer class of $K$ such that $[B : k] = [k' : k]^2$. By Lemma 11.5.1 we see that $B = \text{Mat}(n \times n, K)$ for some $n$. Then $[k' : k]^2 = n^2d^2$ whence the result. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: