Lemma 11.4.10. Let $A$ be a finite central simple algebra over $k$. Then $A \otimes _ k A^{op} \cong \text{Mat}(n \times n, k)$ where $n = [A : k]$.
Proof. By Lemma 11.4.8 the algebra $A \otimes _ k A^{op}$ is simple. Hence the map
\[ A \otimes _ k A^{op} \longrightarrow \text{End}_ k(A),\quad a \otimes a' \longmapsto (x \mapsto axa') \]
is injective. Since both sides of the arrow have the same dimension we win. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: