The Stacks project

Simple finite algebras over a field are matrix algebras over a skew field.

Theorem 11.3.3. Let $A$ be a simple finite $k$-algebra. Then $A$ is a matrix algebra over a finite $k$-algebra $K$ which is a skew field.

Proof. We may choose a simple submodule $M \subset A$ and then the $k$-algebra $K = \text{End}_ A(M)$ is a skew field, see Lemma 11.3.2. By Lemma 11.3.1 we see that $A = \text{End}_ K(M)$. Since $K$ is a skew field and $M$ is finitely generated (since $\dim _ k(M) < \infty $) we see that $M$ is finite free as a left $K$-module. It follows immediately that $A \cong \text{Mat}(n \times n, K^{op})$. $\square$


Comments (1)

Comment #1367 by Herman Rohrbach on

Suggested slogan: Simple finite algebras over a field are matrix algebras over a skew field.

There are also:

  • 6 comment(s) on Section 11.3: Wedderburn's theorem

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0747. Beware of the difference between the letter 'O' and the digit '0'.