Theorem 11.3.3. Let $A$ be a simple finite $k$-algebra. Then $A$ is a matrix algebra over a finite $k$-algebra $K$ which is a skew field.
Simple finite algebras over a field are matrix algebras over a skew field.
Proof.
We may choose a simple submodule $M \subset A$ and then the $k$-algebra $K = \text{End}_ A(M)$ is a skew field, see Lemma 11.3.2. By Lemma 11.3.1 we see that $A = \text{End}_ K(M)$. Since $K$ is a skew field and $M$ is finitely generated (since $\dim _ k(M) < \infty $) we see that $M$ is finite free as a left $K$-module. It follows immediately that $A \cong \text{Mat}(n \times n, K^{op})$.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #1367 by Herman Rohrbach on
There are also: